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A theory based on localized-orbital approaches is developed to describe the valley splitting observed
in silicon quantum wells. The theory is appropriate in the limit of low electron density and relevant
for quantum computing architectures. The valley splitting is computed for realistic devices using the
quantitative nanoelectronic modeling tool NEMO. A simple, analytically solvable tight-binding
model reproduces the behavior of the splitting in the NEMO results and yields much physical
insight. The splitting is in general nonzero even in the absence of electric field in contrast to
previous works. The splitting in a square well oscillates as a function ofS, the number of layers in
the quantum well, with a period that is determined by the location of the valley minimum in the
Brillouin zone. The envelope of the splitting decays asS23. The feasibility of observing such
oscillations experimentally in Si/SiGe heterostructures is discussed. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1637718#

There is much interest in developing semiconducting
nanostructures in which spins are coherent: for example a
spin-based quantum dot quantum computer.1 Reasons for us-
ing silicon as opposed to gallium arsenide heterostructures
include ~1! longer intrinsic spin coherence times due to
smaller spin-orbit coupling and~2! elimination2 of decoher-
ence caused by coupling between electrons and nuclear spins
by use of isotropically pure spin-zero28Si. However, one
complication of Si compared to GaAs is that unstrained Si
has a sixfold degenerate conduction-band minimum. Strain
in Si/SiGe heterostructures reduces the sixfold valley degen-
eracy to be twofold, but the remaining twofold valley degen-
eracy is a potential source of decoherence and other
difficulties.3 It is thus of great interest to understand how to
lift this remaining two-valley degeneracy and maximize the
energy splitting between the lowest quantized levels.

Valley splitting has been studied experimentally4 and
theoretically.5 Early work includes the effective mass ap-
proaches of Sham and Nakayama6 at single interfaces, and
Ohkawa7 in quantum wells. More recently, Grosso8 used an
sp3 empirical tight-binding model to study the splitting in Si
superlattices. None of these works focus on the essential dif-
ferences in the behavior of the valley splitting in triangular
versus square wells. However, modern heterostructures have
now made square well potentials much more experimentally
relevant. Ohkawa7 has found the essential features of the
valley splitting in finite quantum square wells: the presence
of a nonzero splitting even in zero electric field; the oscilla-
tion of the splitting as a function of quantum well thickness;
and the decay of the splitting as the cube of the well thick-
ness. However, Ohkawa did not appreciate the essential role
of the square well potential in obtaining these results. More-

over, Ohkawa’s methods have been criticized;5 an important
conceptual problem is that his multiband effective mass
theory uses ak-state basis, fundamentally inappropriate for a
quantum-confined structure, and includes a structure-specific
intervalley-coupling constant.

Here the empirical tight-binding method is used to study
valley splitting in the limit of low electron density. The
localized-orbital basis used in tight binding is most appropri-
ate for heterostructures, which have large changes of the po-
tential on the atomic length scale.

Figure 1~a! shows the valley splitting versus well width
at various electric fields for strained Si@001# quantum wells
with hard wall boundary conditions using strain conditions
appropriate for a Si0.8Ge0.2 relaxed substrate. The results
were obtained using the Nanoelectronic Modeling tool,

FIG. 1. Valley splitting vs well width in a strained Si quantum well.~a!
splitting at various appliedE fields using NEMO’ssp3d5s* model, with
integral numbers of monolayers;~b! comparison of NEMO results at zero
applied field vs simple tight binding model. Symbols show NEMO~d! and
two-band~3! results evaluated at atom sites. Lines~with interpolation! are
Eq. ~5!, as written ~dotted!, or scaled to better match NEMO~dashed!;
scaling is justified by the many evanescent states absent from the simpler
models.
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NEMO,9 a heterostructure modeling tool that simulates high
bias transport across heterostructure layers using the non-
equilibrium Green function formalism. NEMO has been
used9 for the quantitative design of resonant tunneling di-
odes, MOS oxide thickness analysis and studies of incoher-
ent scattering. Here a nearest-neighbor, tight-binding, spin-
orbit sp3d5s* model10 with 40 orbitals per unit cell, recently
updated for strained SiGe systems is used. NEMO provides a
highly accurate picture of the atomic-scale structure of elec-
tronic wave functions in a silicon quantum well in the limit
of low electron densities appropriate for quantum computing.
Three features of the calculation stand out:~i! the splitting is
nonzero even at zero field;~ii ! the zero field splitting exhibits
oscillations as a function of well width; and~iii ! the envelope
decays as the cube of the well thickness.

While NEMO gives results of high accuracy, the sheer
number of bands in the model blur the underlying~simple!
physics. Two simple models that are related through basis
transformations~Fig. 2! are developed to gain more insight;
only the two band is considered here.11

The bulk ~cyclic boundary! version of the tight-binding
model has the dispersion relations

E6~k!5e62v cos~ka/2!12u cos~ka!, ~1!

wherea52.715 Å is the length of a unit cell. Fitting Eq.~1!
to bulk dispersion curves obtained from NEMO~Fig. 2!, to
obtain the same degenerate valley minima and curvature,
yields v50.683 eV andu50.612 eV.

The energy differenceE21 between the two low-lying
eigenstates in the finite two-band model is now calculated
without additional fitting parameters, as shown in Fig. 1~b!.
Since NEMO incorporates spin-orbit coupling while the two-
band model does not, it is clear that spin-orbit coupling is
irrelevant.12 The excellent agreement with the sophisticated

NEMO calculation in terms of the oscillations and their en-
velope shows that the two-band model captures the essential
physics of valley splitting.

To obtain analytic expressions for the valley splitting of
the model of Fig. 2, we write the wave function in the
localized-orbital basis for a chain of 2N11 unit cells~each
unit cell of the chain represents a monolayer in@001#-
oriented Si! centered at the origin, as

uc&5 (
j 52N

N

@Cj
~a!ua; ja&1Cj

~b!ub; ja&], ~2!

where a and b are the localized orbitals. Each energy of
interest for valley splitting lies in the valley of the lower
band with two Bloch statesk1 andk2 , satisfying Eq.~1!:

E2~k1!5E2~k2!. ~3!

At each energy, the localized-orbital expansion coefficients,
C, can be expressed in terms of these two bulk states.13 Due
to inversion symmetry the eigenstates of Eq.~2! are simul-
taneous parity eigenstates. The even states are linear combi-
nations of cosines atk1 and k2 , while the odd states are
linear combinations of sines. The hard wall condition implies

CN11
~a! 5CN11

~b! 50, C2~N11!
~a! 5C2~N11!

~b! 50. ~4!

The very different physics of quantum-confined states in
direct- and indirect-gap quantum wells is a consequence of
the bulk bands together with Eqs.~2!–~4!. In both cases de-
generate Bloch states6k may be combined so that the co-
efficients are sines and cosines. In a direct-gap well there is
only one pair of Bloch states at each energy, so that~evanes-
cent states aside! the hardwall condition can only be satisfied
by doublingk on going from the ground to the first excited
state. In contrast, for an indirect gap well, the hardwall con-
dition may be satisfied by not only altering the valuesk1 and
k2 , but also their mixture. Hence the lowest two states are
characterized by pairs (k1

e ,k2
e), (k1

o ,k2
o) differing slightly, so

that the lowest even and odd states have cosine-like enve-
lopes with (k1

e,o2k2
e,o)/2'p/L @Fig. 3~a!#.

For a quantum well ofSatoms@S52(2N11)#, Eqs.~3!
and~4! can be solved analytically11 order-by-order in powers
of (S12)21. To leading order in (S12)21, the splitting,
denotedE21, is

E21.
16p2u

~S12!3 usin@~S12!f0#usin~f0!, ~5!

FIG. 2. Bulk dispersion from NEMO and Eq.~1!. Valley splitting arises
when there are two pairs (k1,2, –k1,2) of counterpropagating bulk states
forming two degenerate bound states with the proper cosine-like envelope at
a given energy. Under confinement to lengthL this envelope is characterized
by (k12k2)/2'D'p/L for energyE(k1)5E(k2). In the parlance of per-
turbation theory, confinement couples these two degenerate states, when
splitting of the lowest two QW eigenstates, each of which is characterized
by a pair of bulk states (k1

e,o ,k2
e,o) for even and odd parity. Roughly, the

envelopes of both lowest eigenstates are this same cosine, while the rapid
oscillations determined by (k11k2)/2'km are of opposite parity@Fig. 3~a!#.
Inset: Sketch of two versions of a simplep-orbital tight-binding model,
related by a basis change; positive lobes are shaded, negative white. Upper:
Single-band model with onep-like orbital per atom and one atom per unit
cell ~size a/2). Parameters aree ~onsite!, v ~nearest-neighbor!, and u
~second-near-neighbor!. Lower: Doubling the unit cell to two atoms~sizea!
yields a two-band model.

FIG. 3. ~a! Typical NEMO wave functions~trace over tight binding coeffi-
cients! of two valley-split states;~b! valley splitting in a strained Si quantum
well with hardwall boundary conditions versus applied field for several well
widths in monolayers, calculated NEMO.
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wheref05kma/2 and sin(f0)5A12(v/4u)2. Higher-order
corrections to Eq.~5! can be calculated in a straightforward
manner;11 these corrections are modest down to quantum
well widths of order 40 unit cells.

Equation ~5! predicts a decay in the amplitude of the
oscillations with (S12)23. The oscillations with well width
have a frequency determined by the location of the valley
minimum km , and are a direct consequence of the phase
matching at the interface becoming almost identical for the
two lowest states. A corollary of this oscillatory behavior is
that the parity of the ground state alternates between even
and odd. The alternating parity has already been noted,14 but
has not been explained.

All considerations described above are based on the as-
sumption of a flat band quantum well. However, local elec-
tric fields are ubiquitous in heterostructures due to modula-
tion doping and external gate potentials. Figure 1~a!, which
displays the splitting versus well width for different values of
constant electric field, demonstrates that the field has little
effect until the voltage drop per unit cell is of the same order
as the splitting at zero field. For a fixed field the oscillations
are quenched for longer wells; this result is reasonable since
in longer wells the states are more readily localized in the
bottom of the triangular notch, where they are insensitive to
the location of the far boundary. Figure 3~b! shows the split-
ting versus applied field for quantum wells of various length
calculated with NEMO. The splitting for a fixed well size
increases monotonically as a function of field, becoming lin-
ear for higher fields, in agreement with Sham and Nakaya-
ma’s result for semi-infinite systems.6 However, at lower
fields the splitting in a quantum well is markedly nonlinear,
in contrast to the semi-infinite system.6

All discussions above consider infinite hard wall con-
finement. The effect of a finite voltage discontinuity at the
well edges have also been investigated using NEMO and the
two-band model. The behavior is qualitatively unaffected
down to band offsets of a few tenths of an eV, so the results
obtained for infinite square wells should also be realistic
guide to actual heterostructures.15

Finally we relate the results here to experimental mea-
surements of valley splitting in Si quantum wells. Several
groups have measured nonzero valley splittings with magni-
tude of the same order as predicted by our models;4 in the
past, these splittings have been usually interpreted as result-
ing from nonzero electric fields that are typical in
modulation-doped heterostructures.6,7 Indeed, the electric
fields from the dopants at typical electron densities
(1011/cm2) are such that the voltage drop per unit cell is the
same order of magnitudes as the observed splittings, which
in turn are of the same order as the zero-field splitting cal-
culated here at well widths of about 10 nm. Lowering the
electron density by an order of magnitude will reduce the
electric field and suppress many-body effects. The simula-
tions and the model presented here predict that experiments
on heterostructures with lower electron density will provide
unambiguous evidence for the mechanism for zero-field val-
ley splitting investigated here.

In conclusion, tight-binding calculations, explaining the

valley splitting in Si quantum-confined heterostructures are
presented. NEMO multiband calculations9 give the quantita-
tive details while two-band calculations elucidate the physics
of these structures. In particular, zero-field splitting oscilla-
tions with well width are predicted and explained, reasons
for the amplitude decay of the oscillation and reasons for the
alternating parity of the ground state are given. Experiments
to probe the oscillations in the splitting will require samples
with well widths accurate to one monolayer. The results lead
to a better understanding of these nanostructures.
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